skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dongare, Pratiksha D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evaporation-based solar thermal distillation is a promising approach for purifying high-salinity water, but the liquid-vapor phase transition inherent to this process makes it intrinsically energy intensive. Here we show that the exchange of heat between the distilled and input water can fulfill a resonance condition, resulting in dramatic increases in fresh water production. Large gains (500%) in distilled water are accomplished by coupling nanophotonics-enabled solar membrane distillation with dynamic thermal recovery, achieved by controlling input flow rates as a function of incident light intensity. The resonance condition, achieved for the circulating heat flux between the distillate and feed, allows the system to behave in an entirely new way, as a desalination oscillator. The resonant oscillator concept introduced here is universal and can be applied to other systems such as thermal energy storage or solar-powered chemical reactors. 
    more » « less